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o Who cares about the Cosmic Dawn?

o How do we study the unknown?

o How do we make it observable?
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A Brief History of Everything
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A Brief History of Everything
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A Brief History of Everything
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A Brief History of Everything
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o What’s so great about
this “Cosmic Dawn”?
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A Brief History of Everything
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The Birth of Complexity
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o Start with a
universe
described by
simple physics +
a few numbers

o Then suddenly:
radiation,

chemistry, and
kinetic

feedback!

Kahler & Abel (for PBS NOVA)
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From Exotic to Normal
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z =118.647598

o Population Il stars
o Form through H»

o May be very
massive

o Exceptionally
luminous
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o Heavy element
production (and
dispersal) seeds

“normal” Population

on/
II star formation. Wise & Abel
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Recombination and Reionization
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apart

Regquires sources like
stars
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Recombination and Reionization
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Feedback, Glorious Feedback
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The First Black Holes
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T= 630 Myr - o Black holes

4 appear at the
same time (or
slightly later)

o How do they
affect galaxy
formation?

o How do they
affect the
intergalactic
medium?
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He thinks too much:
Such men are dangerous
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o How do we study the unknown?
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Grand Unified Galaxy Formation
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T A\ N\ vimm A all relevant physical
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Method #1: Computauonal Astrophysws
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o Precise numerical calculations from first
principles
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Method #1: Computational Astrophysics
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o Precise numerical calculations from first
principles

o When the star forms:
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Method #1: Computational Astrophysics
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o Precise numerical calculations from first
principles

o When the star forms:

o The universe is defined by simple initial
conditions
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Method #1: Computational Astrophysics
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o Precise numerical calculations from first
principles

o When the star forms:

o The universe is defined by simple initial
conditions

o The physics is known

o So its formation is a well-posed problem!
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Method #1: Computational Astrophysics
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o Precise numerical calculations from first
principles
o When the star forms:

o The universe is defined by simple initial
conditions

o The physics is known

o So its formation is a well-posed problem!

o GOAL: understand first steps in detail
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Simulating The First Stars: Lessons
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o Stars form in small
dark matter clumps

Kahler & Abel (for PBS NOVA)
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Simulating The First Stars: Lessons
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o Stars form in small
dark matter clumps

o Gas heats as it falls
onto clump

o Cools through
radiation from
molecular hydrogen

o Left with gas clump
several hundred times
larger than Sun

o If left alone, it will
contract to form first
star!

Kahler & Abel (for PBS NOVA)
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Challenge #1: Computational Power
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Challenge #1: Computational Power
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Key Question: How massive are the
first stars?

Original answer: ~100-500 solar
masses

More recently:

o Disk forms around first star,
possibly causing fragmentation
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Challenge #1: Computational Power
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o Key Question: How massive are the
first stars?

o Original answer: ~100-500 solar First stor forms () 'y + 27 yeors

masses
o More recently: \ _
density [em

10|2 ‘ol,) ‘OIO 10!3 ‘ol.

o Disk forms around first star, C—

possibly causing fragmentation ot s i
o Chemo-thermal effects may
also cause fragmentation

Tuesday, June 26, 12



Challenge #1: Computational Power

i . : - b S| DY L i s oy i S I T
sa sk N WWMM’"‘M" oLata s ¥ Bt ® Bt 2 BERiar 2000 o e el

o Key Question: How massive are the
first stars?

o Original answer: ~100-500 solar First stor forms () 'y + 27 yeors

masses
o More recently: \ _
density [em

10|2 ‘ol,) ‘OIO 10!3 ‘ol.

o Disk forms around first star, C—

possibly causing fragmentation ot s i
o Chemo-thermal effects may
also cause fragmentation

o Unresolved turbulence in the
clouds can cause fragmentation

Tuesday, June 26, 12



Challenge #1: Computational Power

i . : - b S| DY L i s oy i S I T
sa sk N WWMM’"‘M" oLata s ¥ Bt ® Bt 2 BERiar 2000 o e el

o Key Question: How massive are the
first stars?

o Original answer: ~100-500 solar First stor forms () 'y + 27 yeors

masses
o More recently: \ _
density [em

10|2 ‘ol,) ‘OIO 10!3 ‘ol.

o Disk forms around first star, C—

possibly causing fragmentation ot s i
o Chemo-thermal effects may
also cause fragmentation

o Unresolved turbulence in the
clouds can cause fragmentation

o Current answer: ???? solar masses

Tuesday, June 26, 12



Challenge #2: The nght Physws
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o Acoustic oscillations at recombination imprint bulk
velocities on the gas relative to dark matter

o These prevent gas from accreting onto dark matter
clumps, delaying structure formation!
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First Pop Ill.1 stars
form (T, ~2000 K)
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External Processes and Galaxy Formation
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o At late times,
external inputs are:

o Nearly uniform
o Slowly evolving
o Known!

o At early times, they
are half the process!

ERIS simulation of Milky Way
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Numerical Simulations of the Early Universe
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o Most successful with carefully chosen
problems

o Formation of the first stars
o Explosions of the first stars

o Radiation from the first stars...

Tuesday, June 26, 12



Method #2: Parameterized Analytic Models
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o Galaxies are just machines
that accrete gas and churn
out stars

o Crudely parameterize the
physics, e.g.
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Method #2: Parameterized Analytic Models
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o Galaxies are just machines
that accrete gas and churn
out stars

o Crudely parameterize the
physics, e.g.
o Star formation
efficiency
o  GOAL: understand robust

aspects of paradigm,
identify key physical inputs
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Example: Photon Counting and Reionization

BT A A T oA - VoA Tty o' IV AETS A IR RV 0w

o Goal: a simple model
for the morphology of
the ionized gas

o Assume we know
galaxy distribution

e b

-:.. .?u-.d‘..u\g:h‘“ =
—

T o

Mesinger & Furlanetto (2007)
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Ionized IGM

Neutral IGM
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Example: Photon Counting and Reionization
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- Compare (# ionizing
photons) to (# atoms) fonized 1GM
- First ionized bubble is /

easy... *

 But what if that bubble
overlaps another galaxy?

» Early galaxies are Galaxy

highly clustered and
bubbles are big! Neutral IGM

Furlanetto et al. (2004)
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Example: Photon Counting and Reionization
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- Compare (# ionizing
photons) to (# atoms) _
Ionized IGM

. First ionized bubble is /

easy... *

 But what if that bubble
overlaps another galaxy?

» Early galaxies are Galaxy

highly clustered and
bubbles are big! Neutral IGM

Furlanetto et al. (2004)
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Example: Photon Counting and Reionization
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- Compare (# ionizing
photons) to (# atoms) _
Ionized IGM

« Firstionized bubble is
easy...

 But what if that bubble
overlaps another galaxy?

- Early galaxies are Galaxy

highly clustered and
bubbles are big! Neutral IGM

Furlanetto et al. (2004)
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“Semi-Numeric” Approaches
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o Step 1: Begin with initial
conditions of simulation
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“Semi-Numeric” Approaches
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o Step 1: Begin with initial
conditions of simulation

o Step 2: Evolve the box using
simple physics ( “linear theory”)
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“Semi-Numeric” Approaches

o Step 1: Begin with initial
conditions of simulation

o Step 2: Evolve the box using
simple physics ( “linear theory”)

o Step 3: Use analytic arguments
to identify sites of galaxies
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“Semi-Numeric” Approaches
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o Step 1: Begin with initial
conditions of simulation

o Step 2: Evolve the box using
simple physics ( “linear theory”)

o Step 3: Use analytic arguments
to identify sites of galaxies

o Step 4: Use photon-counting to
paint on ionized bubbles
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“Semi-Numeric” Approaches

o O . : 2 . PR = L ¥ PR : 7 =
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o Step 1: Begin with initial
conditions of simulation

o Step 2: Evolve the box using
simple physics ( “linear theory”)

o Step 3: Use analytic arguments

to identify sites of galaxies

o Step 4: Use photon-counting to
paint on ionized bubbles

o Computing requirements: fancy
desktop rather than custom
cluster!
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Example: Semi-Numeric Models of Reionization
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Can we all Just get along‘7
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o Neither approach is satisfactory
o Computational: only part of the story

o Analytic: missing physics
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Can we all Just get along‘7
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o Neither approach is satisfactory
o Computational: only part of the story
o Analytic: missing physics

o Problem: how can we do better?
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PData!
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o Hubble Ultra-Deep
Field contains
hundreds of early
galaxies!

o Real data let us
narrow down our
models

o Just beginning to get
there!
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Where next?
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o How do we make it observable?
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Methods to Study The Cosmic Dawn
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o Galaxies
o Deeper and/or wider and/or different surveys!
o Detailed spectroscopy
o Relonization
o The spin-flip background
o The Lyman-a line
o CMB
o Diffuse line backgrounds
o The first generations
o The spin-flip background
o Diffuse line backgrounds

Tuesday, June 26, 12



The Spin- th Background
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o Protons and
electrons both have =
spin and hence b

L. * Proton | | -
magnetic moments o S
21cm N\ | Y

o The 21 cm hyperfine -
spin-flip transition
(v~1.4 GHz)




The 21 cm Line In Astronomy
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@ The HI Nearby Galaxy Survey (THINGS) (@
F. Walter, E. Brinks, E. de Blok, F. Bigiel, M. Thomley, R. Kennicutt
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The Cosmolog1cal Redshift
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You’re receding

Buipeoea a4,noA i
E. Wright

o Photons get stretched as they travel

o Become more “roc” and less energetic
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Advantages of the Spin-Flip Background
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Advantages of the Spin-Flip Background
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o Spectral line
measures entire
history
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Advantages of the Spin-Flip Background
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o Spectral line
measures entire
history

o Directly measures
intergalactic gas
(radiation
backgrounds)
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The Spin-Flip Background Through Time
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z=80 40 20 10
50 I” i ]

o Four Phases to the AGS e 3
spin-flip background =

(Furlanetto 2006, Pritchard & Loeb 2010, = | | :
McQuinn & O’Leary 2012) el i

o Dark Ages

: E

C | | | | | i | | | | | | | | | | | | | | | | | | | | | i

20 40 60 80 100 120 140
v[MHz]

o
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What light through yonder window breaks?

b B . : : PRy T L0 s PP eI SR e
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o First stars and
galaxies produce
ultraviolet photons {5

\..r/; !

o Light up the spin-
flip background by ‘ .
scattering off of I3 wilan (Wikipedia)
intergalactic gas

Tuesday, June 26, 12



The Spin-Flip Background Through Time
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z=80 40 20 10

o Four Phases to the ‘;

3 . oL, JER SRR =
spin-flip background N -
(Furlanetto 2006, Pritchard & Loeb 2010, % -so | - ]
McQuinn & O’Leary 2012) e L :

o Dark Ages

20 40 60 80 100 120 140
v[MHz]
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O! She doth teach the torches to burn bright
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o Gas falling onto black
holes produces intense
radiation

o Stellar remnants
o Quasars

o X-rays heat the
intergalactic gas,

changing spin-flip
background
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The Spin-Flip Background Through Time
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o Four Phases to the w0 @ w
spin-flip background | >

(Furlanel.to 2006, Pritchard & Loeb 20]0, I T S =
McQuinn & O’Leary 2012) _
o Dark Ages :

o First Stars

:
11 | 1 1 | | I | | | I | | | I | | | .

o First Black Holes R R
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Reionization
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o Early stars and
galaxies produce
ionizing photons

o lonized bubbles
grow and merge
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The Spin-Flip Background Through Time
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o Four Phases to the
spin-flip background i

(Furlanetto 2006, Pritchard & Loeb 2010, ] i~ —
MCQLtll’ll’l & 0 )Leary 20]2) 0 .:_. ......... : . I.I/. . oo ,:.: ‘\ i ......... ._:.

o Dark Ages o
o First Stars

o First Black H 4

E | | | | | :l | | | | | | | | | | | | | | | i | | | | | é
20 40 60 80 100 120 140
v[MHzZ]

o Reionization”
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z — 242.62
(xpr)y =1

8T, [(1+42)/1017% (mK)

Mesinger, Furlanetto, & Cen (2010)
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Low-Frequency Radio Telescopes

~1 meter
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Problem #1: Terrestrial Interference

s~ F*N V‘ m"‘. MM > ";c-m"Q'“ ) b’“m“:a.‘.’?)mxm._u’-;': SRl | | | ' : , =

AT B

o Spin flip photons
begin at 21 cm;
end at ~1-2 m

o This is <200
MH?Z

%..wlu.ﬁJﬁ"f"m"mew‘d

o The usual
answer: Distance
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Problem #1: Terrestrial Interference
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o Spin flip photons
begin at 21 cm;
end at ~1-2 m

o Thisis <200
MH?7

o The usual
answer: Distance

Furlanettoetal (2006)
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Problem #1: Terrestrial

N mb&mm«m‘m*'-’“"’“:mtﬂtw-~~-“i-*-:.,_,..,‘v--wﬂ--“‘*ru,

o Spin flip photons
begin at 21 cm;
end at ~1-2 m

o Thisis <200
MH?7

o The usual
answer: Distance

EUTIaNetto etal-A(2000)
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Problem #1: Terrestrial Interference
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o Spin flip photons

begin at 21 cm, A1l
end at ~1-2 m

o Thisis <200 WY L
MH?z7 |

o The usual
answer: Distance =

~(2000)

- “de
v . & -
..-"'L.‘\ Rt 5 oS
e ™ s St
<3
<
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Problem #2: The Ionosphere
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O
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For radio waves, the
ionosphere acts just
like an optical seeing
layer

o But slower
(seconds) and over
wider scales
(degrees)

Computing essential
to correct distortions
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Problem #3: Astronomical Foregrounds
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Problem #3: Astronomical Foregrounds
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The spin-flip background is 10,000
times fainter than our Galaxy!!!
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular
resolution to measure structures
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular
resolution to measure structures

o Requires an interferometer
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular
resolution to measure structures

o Requires an interferometer

o Many telescopes combined into one:
requires substantial computing
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular
resolution to measure structures

o Requires an interferometer

o Many telescopes combined into one:
requires substantial computing

o Map-making is very difficult: beyond current
capabilities except on largest scales
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular
resolution to measure structures

o Requires an interferometer

o Many telescopes combined into one:
requires substantial computing

o Map-making is very difficult: beyond current
capabilities except on largest scales

o Current experiments focus on statistics
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Mesinger, Furlanetto, & Cen (2010)
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular resolution to measure structures
o Requires an interferometer
o Many telescopes combined into one: requires substantial computing

o Map-making is very difficult: beyond current capabilities except on
largest scales

o Current experiments focus on statistics

o Rather than zoom in on a small area seen in detail, can measure
statistics from a large area seen crudely
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular resolution to measure structures
o Requires an interferometer
o Many telescopes combined into one: requires substantial computing

o Map-making is very difficult: beyond current capabilities except on
largest scales

o Current experiments focus on statistics

o Rather than zoom in on a small area seen in detail, can measure
statistics from a large area seen crudely

o Can use simple antennae rather than dishes to be sensitive to wide areas
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular resolution to measure structures
o Requires an interferometer
o Many telescopes combined into one: requires substantial computing

o Map-making is very difficult: beyond current capabilities except on
largest scales

o Current experiments focus on statistics

o Rather than zoom in on a small area seen in detail, can measure
statistics from a large area seen crudely

o Can use simple antennae rather than dishes to be sensitive to wide areas

o Use interferometer + digital tools to get resolution
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Implications for Spin-Flip Measurements
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o Need huge telescope and high angular resolution to measure structures
o Requires an interferometer
o Many telescopes combined into one: requires substantial computing

o Map-making is very difficult: beyond current capabilities except on
largest scales

o Current experiments focus on statistics

o Rather than zoom in on a small area seen in detail, can measure
statistics from a large area seen crudely

o Can use simple antennae rather than dishes to be sensitive to wide areas
o Use interferometer + digital tools to get resolution

o Requires HUGE arrays (100+ elements): huge computing
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Approaches to the Spin-Flip
Background
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Approaches to the Spin-Flip
Background
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Approaches to the Spin-Flip
Background
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GMRT,
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Approaches to the Spin-Flip
Background
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It is built, so we
will come!

Tuesday, June 26, 12



Approaches to the Spin-Flip
Background
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It is built, so we
will come!
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Approaches to the Spin-Flip
Background
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Approaches to the Spin-Flip
Background
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It is built, so we
will come!

200 MHz Contours:
-3,-10,-20 &-30 dB
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Approaches to the Spin-Flip
Background
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Approaches to the Spin-Flip
Background
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It is built, so we
will come!
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To The Moon!
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DARK AGES RADIO EXPLORER DARE's Key Mission Design Features:

* Weak Stability Boundary (WSB) trajectory - requires less AV
for LOI and allows a flexible launch date

* Equatorial, 200km mean orbit altitude - long-period stability
* Low inclination orbit - maximizes Earth occultation

* Launch May 2016 - allows science ops by Dec. 2016

* Baseline Mission 3 years

*Threshold Mission 1 year

TCM-1 5 minutes

Sun Direction
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Summary
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o Computational astrophysics is one tool in
understanding the Cosmic Dawn - but it
still requires us to be clever!

o The spin-flip background is an exciting
(though not yet useful) probe of the Cosmic
Dawn

o Computing is essential to this observing
strategy
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